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Abstract :  This For the bending, buckling and free vibration response of the thick and thin laminated composite and sandwich 

plates, the novel higher-order shear deformation theory is created. The recommended theories presume nonlinear variation of the 

transverse shear strain across the thickness of the plate and provide stress-free top and bottom surface of the plate for transverse 

shear. The governing differential equation derived by Hamilton's theory of the laminated composite and sandwich plates is solved 

using the technique of analytical solution, i.e. For the cross-ply plates with simply assisted boundary conditions along all the 

edges, Navier solution methodology. A wide range of numerical examples of the bending, buckling and free vibration response 
are considered in order to illustrate the accuracy and applicability of the proposed higher-order shear deformation theories. Using 

analogous single layer theories and three-dimensional precise solutions, the present findings are considered to be in strong 

agreement with those published earlier in the literature. 

 

IndexTerms - Bending, Naviers Equation, Hamilton Principal , Shear deformation Theories 

I. INTRODUCTION 

Composite materials has high strength to weight ratio, low specific modulus, high corrosion resistance, high stiffness to weight 

ratio and fatique resistance which enable its use in several engineering application[1-2]. The overgrowing demand of laminated 

composite plate in different structural application makes vital for the researcher to predict the accurate behaviour of plates in 

different working conditions.  

Fiber-reinforced composites (FRC) have an extensive array of applications. They range from structural to recreational use. The 

aerospace and automotive industries look to composites to improve fuel economy due to its high strength to weight ratio.  

The sports industry looks to composites to improve sports equipment technologies. Automobile, Defence, Naval, Civil and most 

recently in Micro-electromechanical applications due to high strength to weight ratio, flexibility, impact resistance and, 

manufacturability. The composite structures are generally classified based on the mixing of two or more material as Fibrous 

composite, particulate composite and, laminated composite.  The Fibrous composite are prepared with matrix of one material with 

fiber of other material e.g. Fiber reinforced composite. Particulate composite are made up of powder sized particles of one material 
with matrix of other material e.g. metal matrix composites. Laminated composites are made up of different combination of layers 

so as to provide strength in required directions which can be a combination of layer of fibrous composite and particulate composite 

stacked over each other. The layers can be made up of various combination of material like isotropic, orthotropic or metallic and 

nonmetallic in nature or some laminates have piezoelectric properties and porous in nature depending on the application [1-2]. 

The behaviour of laminated composite plates are fundamentally predicted using three different approaches i.e. equivalent single 

layer (ESL) theories and layer-wise (LW) or Zig-Zag (ZZ) theories[3-5]. The Equivalent single layer theory was developed for the 

based on the single laminated structure which uses multi laminated structure as three dimensional problem as two dimensional 

problem. There are certain drawbacks of ESL theories such as Classical laminated plate theory (CLPT) which is based on 

Kirchhoff’s hypothesis can only be useful to predict the behaviour for thin plates accurately. The effect of transverse shear stress 

are not taken into consideration which affecting the behaviour of high thickness composite plates.   

The Reissner [6]had taken into account of gross shear deformation into kinematics of Classical Laminated theory. The shear 

correction factor was introduced by Mindlin[7] which is determined comparing with Elasticity solution. The addition of shear 

deformation into classical laminated plate theory is also called as Mindilin reissner plate theory or The First order shear 

deformation theory. In FSDT, assumed that the shear deformation which is normal to midplane, after deformation became straight 

not perpendicular to midplane. The shear correction factor does not give accurate results as well as does not satisfied the surface 

conditions, also the shear correction factor depends on the ply angle sequence, boundary condition as well as Loading[8]. Many 

researcher studied the influence of transverse shear deformation using FSDT [9-12]. 

Many Higher order shear deformation theories are discovered by researcher to vanish the shear correction factor. The 

Reddy[13] developed higher order shear deformation based on polynomial transverse shear function which predicts deformation, 

natural frequency and buckling load of composite laminate with small amount of error. There are many researcher who developed 
polynomial shear deformation theories in terms of Taylor series expansion. The transverse shear strain shape function was 

introduced by Ambartsumyan[[14]] which predicts deformation of laminated plate using third order polynomial function. A 

Transverse shear strain function of higher order polynomial function was consider by many researcher  [10], [15]considering 

boundary condition top and bottom surface of plate with zero transverse shear stress.  

 The a parabolic higher order shear deformation function was developed by Levinson and Murthy in which The displacement 

function are selected such that its behaviour varies with the plate thickness and the slope of the function would be continuous which 

also called as third order shear deformation theory (TSDT). The Phung -Van et al.[16] utilized TSDT for static and free vibration 

with cell based smoothed discrete shear gap method. Further Akbarzadeh et al [17]used TSDT on plates with structural gap and 

overlap to predict the characteristics using hybrid Fourier-Galerkin Method. Nasihatgozara and Khalili[18] used combination of 

FSDT and HSDT to predict the characteristics of sandwich plate which utilized FSDT for face sheet and HSDT for the core 
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material. They applied Hamilton Principal and Energy method to determine motion equation which are solved using differential 

quadrature method. 

Furthermore Kant and Pandya [19]uses same finite element method with seven variable polynomial to predict the behaviour of 

unsymmetrical ply angle sequence. Lo et al developed higher order theory using principal of potential energy which consist of 

eleven variable in differential to be determined for displacement equation. The extensive research on higher order shear 

deformation theories are well documented in a review papers of Noor, Reissner, Reddy, Carrierra and Kant [20-23]. 

The non-polynomial function are similarly utilized as a shear strain function for HSDT extensively in recent decade to predict 

the characteristics of static deformation, buckling and free vibration of laminated as well as the sandwich composite plates. Levy, 

Stein and Tourtier[24] uses sine function as shear deformation function which also referred to as Trigonometric sine shear 

deformation function. D B Singh et al[25]  TSDT with third order power expansion which gives accurate results than TSDT. 

Moreover, the shear deformation function in terms of trigonometric secant function was employed by Grover et al[26] which also 

accurately predict the behaviour of laminated and sandwich plates under the different loading conditions. 

Mantari et al[27] introduced Tangent function as shear strain function for isotropic, composite and sandwich plates which 

shows good agreement with other TSDT. The Trigonometric tangent shear deformation theory are further developed and modified 

by D B Singh et al[28] to study of composite, laminated , and 3D braided composite plates. Furthermore inverses tangent shear 

strain function is also used by Suganyadevi et al. for predicting the static, bucking and free vibration response. Grover et al[29] 

utilized Cotangent (cot ) function as shear strain function. 

Soldetos et al. [[30]]proposed unified hyperbolic sine shear strain function which is able to change transverse strain distribution, 

This Hyperbolic sine shear deformation Theory(HSSDT) employed on composite and sandwich laminated plate static , buckling 

and Free vibration. The HSSDT is modified by El meiche et al for functionally graded composite plates. Inverse hyperbolic sine 

shear deformation theory was developed by Grover et al.[31] to study static and buckling response of the laminated plates. 

Karama et al [32]used exponential function as shear strain function which gives far better results than polynomial as well as 
trigonometric shear deformation theory with compared elasticity solution. The comparison of polynomial , trigonometric,  

hyperbolic trigonometric  and Exponential shear deformation was carried out by Aydogdu[33].Mantari et al [34]  used exponential 

shear stress parameter to develop higher shear deformation theory. 

Unified structure for modelling and analysis of composite plate are developed by Nguyen et al [35] which is polynomial form of 

higher shear deformation theory in unified formulation with consideration of thickness stretching consideration. The various non-

polynomial shear deformation theories are constructed in diagram which also called as Best Theory Diagrams for composite 

laminated plates. Best theory diagrams used to calculate number of variables required to reduce the fixed error based on 

axiomatic/asymptotic method which gives accurate results for composite plates. 

The literature review suggests the need of predicting accurate nature of bending, buckling and vibration characteristics of 

laminated and sandwich composite plate. There are several methods which are already developed in the last century for predicting 

the behaviour of composite plate with accurate prediction but there is still scope for improvement to minimize the error. The new 

higher order shear deformation theories are developed so that the error in results can be minimized. 

In This Paper, A simple isotropic and Composite plates simply supported plates with sinusoidal and uniform distributed loading 

with standard boundary conditions are considered for the analysis using New Higher order shear deformation theory using Naviers 

solution. The computed results for bending are compared with previously published results. The proposed theory can be then use 

for sandwich as well as piezoelectric plates.. 

II. TYPE MATHEMATICAL MODEL 

The Displacement field in Higher Order Shear Deformation Theory is given as per Eq.1.  
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Where f(z) is the function of transverse shear strain, which must satisfy the conditions of transverse sharing of the plate's top 

and bottom surfaces without stress. The derivative of f(z) must disappear on the top and bottom surfaces of the plate to fulfill the 

condition of transverse shear stress-free top and bottom surfaces of the plate. In nature, f(z) can be polynomial, trigonometric, 

hyperbolic and logarithmic. 

The shear strain Function proposed in this paper is given by Eq. 2 
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 Strain-Displacement Relationships 

Considering small deformation theory, linear strain-displacement relationship, according to the considered displacement field, 

for the plate are expressed as: 
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Assuming homogeneous and linear behaving material and plane stress condition in the lamina, the constitutive stress-strain 

relations for any kth lamina in the composite or sandwich plate is expressed as: 

.Q 
                            (4) 

where Q is a constitutive matrix depending up the fibre orientations and elastic properties within the kth lamina. 

The governing differential equations of the plate are obtained using Hamilton’s participle, in the mathematical form it is 

expressed as: 
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, the five Euler-Lagrange equations are expressed as 
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Subsequently stiffness coefficients Eqs. (71-7d) can be revised as: 
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The in-plane force and moment resultants due to stresses in the plate and laminated stiffness coefficients are obtained by 

integrations over the thickness of the plate and expressed as: 
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III. SOLUTION 

The following assumed trigonometric series satisfy the simply supported boundary conditions:  
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where /m a   and 
/n b 

, m and n are the half-wave numbers along x and y-directions, respectively.  

For the bending response of the laminated composite and sandwich plates, the inertia terms and the terms associated with the in-

plane applied loads are omitted. The transverse load q can be expanded using the Fourier series: 
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For the sinusoidal load 0 sin sinq q x y 
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For the uniformly distributed load 0q q
:  
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IV. RESULTS AND DISCUSSION 
  

The bending of symmetric and anti-symmetric simply supported cross-ply laminated and sandwich plates under different types of 

transverse loads, such as sinusoidal load (SSL), uniformly distributed load (UDL) and concentrated point load (CPL), is 

investigated using proposed higher-order shear deformation theories. For the cross-ply laminated plates with [0/90/90/0], [0/90/0] 

and [0/90/0....]n lamination schemes are considered with the following material properties: 

E1 = 25E2; G12 = 0.5E2; G13 = 0.5E2; G23 = 0.2E2 and ν12 = 0.25 

The central deflection and stresses are presented in the non-dimensional using the following identities:  
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Fig 1. Variation of Central deflection with aspect ratio a/h 
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.  

Fig 2 Variation of normal stress xx
, across thickness for [0/90/90/0] laminated plate 

 

For the various values of a/h predicted using a transverse shear strain function, the non-dimensional central deflection as shown in 

Fig 1 is similar to that obtained via Reddy's third-order shear deformation[13]. The average error obtained for all the parameters 

for the respective period thickness ratio shows that the current function gives an average error of 2.75 percent, less than 4.26 

percent for Mantari et al.[26] and 7.25 percent for Reddy[13], compared to the Ref.[35] elasticity solution. The variance of 

bending and transverse shear stresses with the thickness coordinate is shown in Fig 2 by thickness. The action of stresses for the 
theories proposed is very similar to each other, even comparable to those previously published according to theories of higher-

order shear deformation 

IV. CONCLUSION 

The newly developed higher-order shear deformation theory is accessed for the bending, buckling and free vibration response of 

the laminated composite and sandwich plates. The proposed plate theory assume nonlinear variation of transverse shear strain 

through the plate thickness and thus delivers transverse shear stress-free top and bottom surface of the plate.  

The governing equation of plate are solved using Navier solution technique with simply supported boundary conditions to 

investigated the accuracy of the proposed theories. From the proposed higher-order shear deformation theory predicted better 

deflection of laminated composite plates  

The proposed higher-order shear deformation theory with combination of trigonometric and polynomial function as a transverse 

shear strain function predicted results close of those of predicted with TSDT of Reddy [12]. 

 

REFERENCES 

[1] Jones, R. M., 2014. Mechanics of composite materials. CRC press. 

[2] Reddy, J. N., 2003. Mechanics of laminated composite plates and shells: theory and analysis. CRC press. 

[3] Demasi, L., 2009. ∞ 6 Mixed plate theories based on the Generalized Unified Formulation.: Part II: 

Layerwise theories. Composite Structures, 87(1), 12-22. 

[4] Kreja, I., 2011. A literature review on computational models for laminated composite and sandwich 

panels. Open Engineering, 1(1), 59-80. 

[5] Caliri Jr, M. F., Ferreira, A. J., & Tita, V., 2016. A review on plate and shell theories for laminated and 

sandwich structures highlighting the Finite Element Method. Composite Structures, 156, 63-77. 

[6] Reissner, E., 1945. The effect of transverse shear deformation on the bending of elastic plates. Journal of 

Applied Mechanics A69-A77. 

[7] Mindlin, R. D., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic 

plates. Journal of Applied Mechanics 18, 31-38.  

[8] Pai, Perngjin F. "A new look at shear correction factors and warping functions of anisotropic 

laminates." International Journal of Solids and Structures 32, no. 16 (1995): 2295-2313. 

[9] Pagano, N.J., 1970. Exact solutions for rectangular bidirectional composites and sandwich plates. Journal 

of composite materials, 4(1), pp.20-34. 

[10] Reissner, E., 1975. On transverse bending of plates, including the effect of transverse shear deformation. 

International Journal of Solids Structure 11, 569–573 

[11] Phan, N.D. and Reddy, J.N., 1985. Analysis of laminated composite plates using a higher‐order shear 

deformation theory. International journal for numerical methods in engineering, 21(12), pp.2201-2219 

[12] Kuo, Y., Yang, T. and Huang, G.W., 2008. The use of a grey-based Taguchi method for optimizing 

multi-response simulation problems. Engineering Optimization, 40(6), pp.517-528. 

[13] Reddy, J.N., 1984. A simple higher-order theory for laminated composite plates. 

[14] Ambartsumian, S. A., 1958. On the theory of bending plates. Izv Otd Tech Nauk AN SSSR, 5(5), 69-77. 

-0.5

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

0.5

-0.75 -0.5 -0.25 0 0.25 0.5 0.75
z/

h
σxx

http://www.jetir.org/


© 2021 JETIR March 2021, Volume 8, Issue 3                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2103071 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 515 
 

[15]  Kaczkowski, Plates. Statistical calculations. Warsaw: Arkady; 1968. 

[16] Nguyen‐Thoi, T., Phung‐Van, P., Nguyen‐Xuan, H. and Thai‐Hoang, C., 2012. A cell‐based smoothed 

discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–

Mindlin plates. International Journal for Numerical Methods in Engineering, 91(7), pp.705-741. 

[17] Akbarzadeh, A.H., Abedini, A. and Chen, Z.T., 2015. Effect of micromechanical models on structural 

responses of functionally graded plates. Composite Structures, 119, pp.598-609. 

[18] Nasihatgozar, M. and Khalili, S., 2017. Free vibration of a thick sandwich plate using higher order shear 

deformation theory and DQM for different boundary conditions. Journal of Applied and Computational 

Mechanics, 3(1), pp.16-24. 

[19] A. K. Noor and W. S. Burton, “Refinement of higher-order laminated plate theories.,” Appl. Mech. Rev., 

vol. 42, no. 1, pp. 1–13, 1989. 

[20] E. Reissner, “Reflections on the theory of elastic plates,” vol. 38, no. 11, pp. 1453–1464, 2016. 

[21] J. N. Reddy, “A review of refined theories of laminated composite plates.,” Shock Vib. diges, vol. 22, no. 

7, pp. 3–17, 1990. 

[22] E. Carrera, Theories and Finite Elements for Multilayered , Anisotropic , Composite Plates and Shells, 

vol. 9, no. January. 2002. 

[23] M. Touratier, “An Efficient Standard Plate Theory,” Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991. 

[24] D. B. Singh and B. N. Singh, “International Journal of Mechanical Sciences New higher order shear 

deformation theories for free vibration and buckling analysis of laminated and braided composite plates,” 

vol. 132, no. June, pp. 265–277, 2017. 

[25] N. Grover and B. N. Singh, “An inverse trigonometric shear deformation theory for supersonic flutter 

characteristics of multilayered composite plates,” Aerosp. Sci. Technol., vol. 1, pp. 1–11, 2016. 

[26] J. L. Mantari, A. S. Oktem, and C. G. Soares, “International Journal of Solids and Structures A new 

trigonometric shear deformation theory for isotropic , laminated composite and sandwich plates,” Int. J. 

Solids Struct., vol. 49, no. 1, pp. 43–53, 2012. 

[27] D. B. Singh and B. N. Singh, “Buckling analysis of three dimensional braided composite plates under 

uniaxial loading using Inverse Hyperbolic Shear Deformation Theory,” Compos. Struct., vol. 157, pp. 

360–365, 2016. 

[28] N. Grover, B. N. Singh, and D. K. Maiti, “New Nonpolynomial Shear-Deformation Theories for 

Structural Behavior of Laminated-Composite and Sandwich Plates,” pp. 1–11. 

[29] T. Timarci and K. P. Soldatos, “Comparative Dynamic Studies For Symmetric Cross-Ply Circular 

Cylindrical Shells On The Basis Of A,” J. Sound Vib., vol. 187, pp. 609–624, 1995. 

[30] N. Grover, D. K. Maiti, and B. N. Singh, “A new inverse hyperbolic shear deformation theory for static 

and buckling analysis of laminated composite and sandwich plates,” Compos. Struct., vol. 95, pp. 667–

675, 2013. 

[31] M. Karama, K. S. Afaq, and S. Mistou, “Mechanical behaviour of laminated composite beam by the new 

multi-layered laminated composite structures model with transverse shear stress continuity,” vol. 40, pp. 

1525–1546, 2003. 

[32] M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. Struct., vol. 

89, no. 1, pp. 94–101, 2009. 

[33] J. L. Mantari, A. S. Oktem, and C. G. Soares, “Static and dynamic analysis of laminated composite and 

sandwich plates and shells by using a new higher-order shear deformation theory,” Compos. Struct., vol. 

94, no. 1, pp. 37–49, 2011. 

[34] T. N. Nguyen, C. H. Thai, and H. Nguyen-xuan, “On the general framework of high order shear 

deformation theories for laminated composite plate structures : A novel unified approach,” Int. J. Mech. 

Sci., vol. 110, pp. 242–255, 2016. 

[35] Pagano, N. J., and Hatfield, H. J., 1972. Elastic behavior of multilayered bidirectional composites. AIAA 

Journal 10, 931-933. 

 

http://www.jetir.org/

